質譜儀是一種很好的定性鑒定用儀器,目前,在有機質譜儀中,除激光解吸電離-飛行時間質譜儀和傅立葉變換質譜儀之外,所有質譜儀都是和氣相色譜或液相色譜組成聯用儀器。這樣,使質譜儀無論在定性分析還是在定量分析方面都十分方便。
同時,為了增加未知物分析的結構信息,為了增加分析的選擇性,采用串聯質譜法(質譜-質譜聯用),也是目前質譜儀發展的一個方向。也就是說,目前的質譜儀是以各種各樣的聯用方式工作的。
質譜儀部分
質量分析器種類很多,最常用的是四極桿分析器(簡寫為Q),其次是離子阱分析器(Trap)和飛行時間分析器(TOF)。為了增加結構信息,大多采用具有串聯質譜功能的質量分析器,串聯方式很多,如Q-Q-Q,Q-TOF等。
串聯質譜的工作原理
為了得到更多的有關分子離子和碎片離子的結構信息,早期的質譜工作者把亞穩離子作為一種研究對象。所謂亞穩離子(metastable ion)是指離子源出來的離子,由于自身不穩定,前進過程中發生了分解,丟掉一個中性碎片后生成的新離子,這個新的離子稱為亞穩離子。
這個過程可以表示為:m1+m2+ +N , 新生成的離子在質量上和動能上都不同于m1+ , 由于是在行進中途形成的,它也不處在質譜中m2的質量位置。研究亞穩離子對搞清離子的母子關系,對進一步研究結構十分有用。于是,在雙聚焦質譜儀中設計了各種各樣的磁場和電場聯動掃描方式,以求得到子離子,母離子和中性碎片丟失。盡管亞穩離子能提供一些結構信息,但是由于亞穩離子形成的幾率小,亞穩峰太弱,檢測不容易,而且儀器操作也困難,因此,后來發展成在磁場和電場間加碰撞活化室,人為地使離子碎裂,設法檢測子離子,母離子,進而得到結構信息。這是早期的質譜-質譜串聯方式。
隨著儀器的發展,串聯的方式越來越多。尤其是20世紀80年代以后出現了很多軟電離技術,如ESI、APCI、FAB、MALDI等,基本上都只有準分子離子,沒有結構信息,更需要串聯質譜法得到結構信息。因此,近年來,串聯質譜法發展十分迅速。
串聯質譜法可以分類
空間串聯和時間串聯??臻g串聯是兩個以上的質量分析器聯合使用,兩個分析器間有一個碰撞活化室,目的是將前級質譜儀選定的離子打碎,由后一級質譜儀分析。而時間串聯質譜儀只有一個分析器,前一時刻選定-離子,在分析器內打碎后,后一時刻再進行分析。本節將敘述各種串聯方式和操作方式。
串聯質譜的主要串聯方式
質譜-質譜的串聯方式很多,既有空間串聯型,又有時間串聯型。空間串聯型又分磁扇型串聯,四極桿串聯,混合串聯等。如果用B表示扇形磁場,E表示扇形電場,Q表示四極桿,TOF表示飛行時間分析器,那么串聯質譜主要方式有:
①空間串聯
磁扇型串聯方式:BEB EBE BEBE等
四極桿串聯:Q-Q-Q
混合型串聯:BE-Q Q-TOF EBE-TOF
②時間串聯
離子阱質譜儀
回旋共振質譜儀
無論是哪種方式的串聯,都必須有碰撞活化室,從第一級MS分離出來的特定離子,經過碰撞活化后,再經過第二級MS進行質量分析,以便取得更多的信息。
碰撞活化分解
利用軟電離技術(如電噴霧和快原子轟擊)作為離子源時,所得到的質譜主要是準分子離子峰,碎片離子很少,因而也就沒有結構信息。為了得到更多的信息,最好的辦法是把準分子離子“打碎”之后測定其碎片離子。在串聯質譜中采用碰撞活化分解(Collision activated dissociation, CAD)技術把離子“打碎”。
碰撞活化分解也稱為碰撞誘導分解(Collision Induced dissociation, CID),碰撞活化分解在碰撞室內進行,帶有一定能量的離子進入碰撞室后,與室內情性氣體的分子或原子發生碰撞,離子發生碎裂。為了使離子碰撞碎裂,必須使離子具有一定動能,對于磁式質譜儀,離子加速電壓可以超過1000V,而對于四極桿,離子阱等,加速電壓不超過100V,前者稱為高能CAD,后者稱為低能CID。二者得到的子離子譜是有差別的。
串聯質譜法工作方式和主要信息
1、三級四極質譜儀(Q-Q-Q)的工作方式和主要信息
三級四極質譜儀有三組四極桿,第一組四級桿用于質量分離(MS1),第二組四極桿用于碰撞活化(CAD),第三組四極桿用于質量分離(MS2)。主要工作方式有四種。
三級四極質譜儀四種Ms-Ms工作方式