2)推挽驅動電路
當電源IC驅動能力不足時可使用推挽驅動電路。推挽驅動電路能提升電流供給能力并能快速完成柵極輸入電容充電。如圖所示,推挽驅動電路包含一個PNP三極管及一個NPN三極管,采用互補輸出。輸入高電平時,上管NPN開啟,下管PNP關閉,驅動MOS管開啟;輸入低電平時,上管NPN關閉,下管PNP開啟,驅動MOS管關閉。

3)雙端變壓器耦合柵極驅動
雙端變壓器耦合柵極驅動電路可同時驅動兩個MOS管,多用于高功率半橋和全橋轉換器中,其電路結構如圖。在第一個周期內OUTA 開啟,給變壓器一次繞組施加正電壓,上管感應導通。在接下來的一個周期內,OUTB 開啟(開啟時間與OUTA相同),在磁化電感上提供極性相反的電壓,下管導通。電路會產生兩個雙極性對稱的柵極驅動電壓輸出,符合半橋電路的控制要求。

2、IGBT驅動
IGBT常被用于中大功率數字電源開發,其驅動電壓范圍為-15~15V。IGBT驅動電路分為正壓驅動和負壓驅動,兩者的區別在于關斷時的門極電位。采用負壓關斷可以避免因米勒電容對門極電壓的抬升作用而產生的誤導通風險,還可以加快關斷速度,減小關斷損耗,從一定程度上提高耐壓。IGBT的驅動電路一般采用專用的驅動芯片,如東芝的TLP系列,富士公司的EXB系列,英飛凌的EiceDRIVER系列等。這里以東芝TLP250和英飛凌1ED020I12-F2為例進行介紹。
1)東芝TLP250芯片
在低性能的三相電壓源或逆變器中,會通過監測直流母線電流來實現電流控制,檢測結果可以用于IGBT的過流保護。在這類電路中對IGBT驅動電路的要求相對簡單。東芝公司生產的TLP250在這種場景中應用較多,其驅動電路如圖所示。TLP250內置光耦合器,其隔離電壓可達2500V,上升和下降時間均小于0.5us,輸出電流達0.5A,可直接驅動50A/1200V以內的IGBT。驅動器體積小,價格便宜,是不帶過電流保護的IGBT驅動芯片中的理想選擇。

2)英飛凌1ED020I12-F2芯片
英飛凌公司的1ED020I12F2是一款電流隔離單路IGBT驅動芯片,芯片輸出電流典型值為2A,可用于600V/1200V IGBT驅動。其內部集成了無芯變壓器實現電氣絕緣隔離,能直接連接電源微控制器。同時,芯片具有過電流和短路保護的DESAT檢測功能、有源米勒箝位功能以及兩級關斷(TLTO)功能,常被用于逆變器和DC/DC轉換器等場合。

3、其他功率器件驅動
除了常用的MOS管和IGBT外,一些新型功率器件也廣泛使用于數字電源中,如SiC MOSFET和氮化鎵晶體管(GaN FET)等。SiC Mosfet管具有阻斷電壓高、工作頻率高、耐高溫能力強、通態電阻低和開關損耗小等特點,適用于高頻高壓場合。SiC MOSFET的驅動電壓范圍為-5~20V,其驅動電路設計應考慮驅動電平與驅動電流的要求,死區時間設定的要求,芯片所帶的保護功能以及抗干擾性等。氮化鎵晶體管與硅管相似,也是電壓驅動,它的柵源極驅動電壓范圍為-5~6V。為了獲得較小的驅動電阻, 氮化鎵晶體管驅動高電平一般設置在5V左右,考慮到高頻工作條件下回路的寄生感抗會引起較大的驅動振蕩,驅動電壓的安全裕量很小。但是GaN相對于Si MOSFET的一個重要優勢在于其高頻性能優異。
關于電源的驅動電路就講到這里,想必大家已初步了解驅動電路的實現方式以及工作原理。在實際設計驅動電路時可根據使用場景要求(功率、頻率、保護、驅動電壓/電流等)選擇合適的驅動電路形式。歡迎感興趣的工程師們一起溝通交流!