當時,電子顯微鏡主要用于研究用重金屬染過色的病毒或組織切片。一束光子打在樣本上,新生的電子被檢測到,被用于解析樣本結構。這種方法成功制作了第一幅病毒的精微圖片——一種煙草病毒。但染色導致無法看清各個蛋白,更不要說原子細節了。Agarad表示,樣本上要么滿是斑點,要么沒染上,你只能看到分子的輪廓。
Herderson等人省略了染色的步驟,把菌視紫紅質的單層晶體放到金屬網格中,然后用電子顯微鏡進行成像。Agard表示,這個過程里,你看到的是蛋白的原子。這在當時是很大的進步,因為當時人們都認為不可能利用電子顯微鏡解析蛋白結構。Henderson等人在1975年發表了這一成果。
20世紀80年代和90年代,低溫電子顯微鏡領域發展迅速。一個關鍵性突破是利用液態乙烷來快速冷凍蛋白溶液。這也是為什么叫低溫電子顯微鏡的原因。但這個技術的分辨率僅為1納米,遠遠達不到針對蛋白結構進行藥物設計的需求。而當時X射線晶體衍射的分辨率能達到0.4納米。NIH等資助者投入了數億美金來支持蛋白晶體領域的發展,但對于低溫電子顯微鏡領域的資助卻很少。
1997年,Henderson參加了高登研究會議(Gordon Research Conference )關于3D電子顯微鏡的年會。一位同事以這樣的話做為開幕致詞,“低溫電子顯微鏡技術非常有限,不可能超越X射線晶體衍射。” 但Henderson的想法完全不同,在下一場發言中,他做出了反擊。Henderson指出,低溫電子顯微鏡會超越其它各種技術,成為全球研究蛋白結構的主流工具。
革命由此開始
在此之后,Henderson等人致力于提高電子顯微鏡的性能——尤其是感知電子的靈敏度。在數碼相機席卷全球很多年后,很多電子顯微鏡學家仍然傾向于使用傳統的膠片,因為比起數碼感應器,膠片能更有效地記錄電子。與顯微鏡生產商合作時,研究者們發明了一種新的直接電子探測器,這種探測器的靈敏度遠高于膠片和數碼相機探測器。
大約在2012年,這種探測器能夠以一分鐘幾十幀的高速得到單個分子原子的連續圖像。同時,和Scheres一樣的研究者們精心編寫了將多張2D圖片建成3D模型的軟件程序。這些3D圖像的畫質可以媲美X射線晶體衍射獲得的圖像。
低溫電子顯微鏡適用于研究大的、穩定的分子,這些分子能夠承受電子的轟擊,而不發生變形——由多個蛋白組成的分子機器是最好的樣本。因此由RNA緊緊圍繞的核糖體是最佳的樣本。三位化學家用X射線晶體衍射研究核糖體溶液的工作在2009年獲得了諾貝爾化學獎,但這些工作花了幾十年。近幾年,低溫電鏡研究者們也陷入了“核糖體熱”。多個團隊研究了多種生物的核糖體,包括人類核糖體的首個高清模型。X射線晶體衍射的研究成果遠遠落后于LMB的Venki Ramakrishnan實驗室,Venki獲得了2009年的諾獎。Venki表示,對于大分子來說,低溫電子顯微鏡遠比X射線晶體衍射要實用。
這幾年,低溫電子顯微鏡的相關文章有很多:2015年一年,這個技術就用于100多個分子的結構研究。X-射線晶體衍射只能對單個、靜態的蛋白晶體成像,但低溫電子顯微鏡能夠對蛋白的多種構象進行成像,幫助科學家們推斷蛋白的功能。
5月,多倫多大學(University of Toronto)結構生物學家John Rubinstein等人使用了100,000張低溫電子顯微鏡圖片來生成V-ATPase 的“分子電影”,V-ATPase的作用是消耗ATP,把質子運進運出細胞液泡。”我們發現,這個酶非常靈活,可以彎折、扭曲和變型。” Rubinstein說道。他認為,這是由于這個酶的靈活性,它能夠高效地把ATP 釋放的能量傳遞到質子泵。