電源模塊發熱問題會嚴重危害模塊的可靠性,使產品的失效率將呈指數規律增加,電源模塊發熱嚴重怎么辦?本文從模塊的熱設計角度出發,介紹各類低溫升、高可靠性的電源設計及應用解決方案。
高溫對功率密度高的電源模塊的可靠性影響極其大,高溫會導致電解電容的壽命降低、變壓器漆包線的絕緣特性降低、晶體管損壞、材料熱老化、低熔點焊縫開裂、焊點脫落、器件之間的機械應力增大等現象。有統計資料表明,電子元件溫度每升高2℃,可靠性下降10%。
一、關鍵器件的損耗
表 1是開關電源關鍵器件的熱損耗根源,了解器件發熱原因,為散熱設計提供理論基礎,能快速定位設計方案。
表 1 主要元器件損耗根源
二、開關電源熱設計
從上表了解關鍵發熱器件和發熱的原因后,可以從以下兩方面入手:
1、從電路結構、器件上減少損耗。
如采用更優的控制方式和技術、高頻軟開關技術、移相控制技術、同步整流技術等,另外就是選用低功耗的器件,減少發熱器件的數目,加大加粗印制線的寬度,提高電源的效率。
a.方案選擇優化熱設計
圖 1是同一個產品的熱效果圖,圖 1 中的A圖采用軟驅動技術方案,圖 1 中的B圖采用直接驅動技術方案,輸入輸出條件一樣,工作30分鐘后測試兩個產品的關鍵器件溫度,如表 2所示, A圖關鍵器件MOS的溫度降幅是B圖的32%,關鍵器件溫度降低同時,提高了產品的可靠性,e所以采用高頻軟開關技術或者軟驅動技術,能大幅度降低關鍵器件的表面溫度。
圖 1 采用不同驅動方案后的熱效果圖
表 2 主要元器件損耗根源
b.器件選擇優化熱設計
器件的選擇不僅需要考慮電應力,還要考慮熱應力,并留有一定降額余量。圖2為一些元件降額曲線,隨著表面溫度增加,其額定功率會有所降低。
圖2 降額曲線
元器件的封裝對器件的溫升有很大的影響。如由于工藝的差異,DFN封裝的MOS管比DPAK(TO252)封裝的MOS管更容易散熱。前者在同樣的損耗條件下,溫升會比較小。一般封裝越大的電 阻,其額定功率也會越大,在同樣的損耗的條件下,表面溫升會比較小。
有時電路參數和性能看似正常,但實際上隱藏很大的問題。如圖3所示,某電路基本性能沒有問題,但在常溫下,用紅外熱成像儀一測, MOS管的驅動電阻表面溫度居然達到95.2℃。長期工作或高溫環境下,極易出現電阻燒壞、模塊損壞的問題。通過調整電路參數,降低電阻的歐姆熱損耗,且將電阻封裝由0603改成0805,大大降低了表面溫度。
圖3驅動電阻表面溫度
c.PCB設計優化熱設計